Turbulent bubbly breakups

Recently I contributed to a new study from the Deike research lab at Princeton with lead author Daniel Ruth, published  in the Proceedings of the National Academy of Sciences USA, about how bubbles break up in turbulent flow, particularly with regard to air bubbles in water. This is important in processes like ocean wave breaking (among many others); when a wave breaks, it captures a lot of air into the water in the form of bubbles, which then get entrained in the water, breaking up into smaller bubbles in the process. We care about this because it tells us about how mass is transferred between atmosphere and ocean, a process which is still poorly modelled in climate modeling.

Many studies that focus on the moment when the bubble breaks up – the pinchoff singularity – have focused on an idealized scenario where the surrounding water is not turbulent and the breakup is highly symmetrical. These are crucial for understanding the basic phenomenon, which involves a self-similar thinning of the neck that joins the two lobes of the breaking bubble just prior to pinchoff, but real bubbly flows are not typically this accommodating.

In this study, the same process was investigated experimentally, with some numerical support, in the presence of a turbulent water bulk with the aim of seeing how the turbulence affects the self-similarity of the approach to pinchoff. The turbulence bends and twists the bubble, deforming it, but it turns out that during the pinching process, the effect of the turbulence decreases until, close to the moment of pinchoff, it becomes irrelevant. In this sense the turbulence sets the initial shape of the bubble before pinchoff, but doesn’t directly affect the pinchoff itself.

But by setting the bubble shape in this way and introducing asymmetries into it, the turbulence can indirectly affect aspects of the pinchoff. The shape of the thinning neck can oscillate as it approaches the pinchoff singularity, and, if the introduced asymmetry is severe enough, the pinchoff can escape self-similarity altogether: the neck forms a kink. The chance of this happening appears to depend on the degree of asymmetry introduced into the initial shape. We also tested this by running a numerical case without turbulence, but with a strong asymmetry in the bubble shape and neck to see if the asymmetry could reproduce the escape from singularity, and found that these numerical examples agreed with the experiments in terms of the used metric.

This study is a fundamental step in the understanding of how the pinchoff singularity behaves in realistic flows that don’t feature the nice symmetry aspects that have been necessary in other fundamental studies. Turbulent bubbly flows are now just a bit less mysterious! The study can be found here in the December 17, 2019 issue of the PNAS.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s